When a negatively charged electron and a positively charged hole in a pair remain bound together following excitation by light, they produce states known as excitons. These states can influence the optical properties of materials, in turn enabling their use for developing various technologies.
True to form, a "strange metal" quantum material proved strangely quiet in recent quantum noise experiments at Rice University. Published this week in Science, the measurements of quantum charge fluctuations known as "shot noise" provide the first direct evidence that electricity seems to flow through strange metals in an unusual liquidlike form that cannot be readily explained in terms of quantized packets of charge known as quasiparticles.
As demand rises for increased data storage and faster-performing computers, researchers are creating a new generation of materials to meet consumers' expectations.
Quantum scientists have discovered a rare phenomenon that could hold the key to creating a 'perfect switch' in quantum devices which flips between being an insulator and a superconductor.
In 1973, physicist Phil Anderson hypothesized that the quantum spin liquid, or QSL, state existed on some triangular lattices, but he lacked the tools to delve deeper. Fifty years later, a team led by researchers associated with the Quantum Science Center headquartered at the Department of Energy's Oak Ridge National Laboratory has confirmed the presence of QSL behavior in a new material with this structure, KYbSe2.
For a magnet to stick to a fridge door, several physical effects inside of it need to work together perfectly. The magnetic moments of its electrons all point in the same direction, even if no external magnetic field forces them to do so.
Deep within every piece of magnetic material, electrons dance to the invisible tune of quantum mechanics. Their spins, akin to tiny atomic tops, dictate the magnetic behavior of the material they inhabit. This microscopic ballet is the cornerstone of magnetic phenomena, and it's these spins that a team of JILA researchersβheaded by JILA Fellows and University of Colorado Boulder professors Margaret Murnane and Henry Kapteynβhas learned to control with remarkable precision, potentially redefining the future of electronics and data storage.
Quantum materials hold the key to a future of lightning-speed, energy-efficient information systems. The problem with tapping their transformative potential is that in solids, the vast number of atoms often drowns out the exotic quantum properties electrons carry.
Electrons move through a conducting material like commuters at the height of Manhattan rush hour. The charged particles may jostle and bump against each other, but for the most part, they're unconcerned with other electrons as they hurtle forward, each with their own energy.
In a new study, researchers from the University of California, Santa Barbara, (UCSB) have reported the discovery of a spin microemulsion in two-dimensional systems of spinor Bose-Einstein condensates, shedding light on a novel phase transition marked by the loss of superfluidity, complex pseudospin textures, and the emergence of topological defects.
Researchers from Lancaster University in the UK have discovered how superfluid helium 3He would feel if you could put your hand into it. Dr. Samuli Autti is the lead author of the research published in Nature Communications.
The diamond in an engagement ring, the wonder-material graphene and the lead in a humble pencil are all formed from carbon, but display profoundly different characteristics. Carbon materials such as these are among the most famous examples of how diverse properties can emerge in materials, based only on the rearrangement of the structure of atoms.
An international team of researchers including a team from the Center for the Advancement of Topological Semimetals (CATS), an Energy Frontier Research Center under the U.S. Department of Energy's Office of Science led by Ames National Laboratory, experimentally demonstrated a new type of nonlinear Hall effect. This Hall effect is driven by the quantum metric, which defines the distances between electronic wavefunctions inside a crystal.
In a paper published recently in Advanced Science, researchers from the Paul Drude Institute in Berlin, Germany, and the Xiamen University, Xiamen, China, demonstrated that ferrimagnetic NiCo2O4 (NCO) constitutes a solution for the long-term challenge of finding materials with a robust out-of-plane magnetization.
Phonons, quasi-particles associated with sounds or lattice vibrations, can carry momentum and angular momentum. However, these quasi-particles are commonly considered to possess negligible magnetic moments.
The advent of quantum computing is opening previously unimaginable perspectives for solving problems deemed beyond the reach of conventional computers, from cryptography and pharmacology to the physical and chemical properties of molecules and materials. However, the computational capabilities of present-day quantum computers are still relatively limited.
In a new collaboration, two research groups, one led by Francesca Ferlaino and one by Markus Greiner, have joined force to develop an advanced quantum gas microscope for magnetic quantum matter. This state-of-the-art instrument reveals intricate dipolar quantum phases shaped by the interactions as reported in Nature.
A new study published in Nature Communications delves into the manipulation of atomic-scale spin transitions using an external voltage, shedding light on the practical implementation of spin control at the nanoscale for quantum computing applications.
In a new study, scientists from the US and Taiwan have theoretically demonstrated the existence of a universal lower bound on topological entanglement entropy, which is always non-negative. The findings are published in the journal Physical Review Letters.